High-speed in-line digital holographic cinematography was used to investigate the diffusion of droplets in locally isotropic turbulence. Droplets of diesel fuel (0.3–0.9mm diameter, specific gravity of 0.85) were injected into a 37×37×37mm3 sample volume located in the center of a 160-liter tank. The turbulence was generated by 4 spinning grids, located symmetrically in the corners of the tank, and was characterized prior to the experiments. The sample volume was back illuminated with two perpendicular collimated beams of coherent laser light and time series of in-line holograms were recorded with two high-speed digital cameras at 500 frames/sec. Numerical reconstruction generated a time series of high-resolution images of the droplets throughout the sample volume. We developed an algorithm for automatically detecting the droplet trajectories from each view, for matching the two views to obtain the three-dimensional tracks, and for calculating the time history of velocity. We also measured the mean fluid motion using 2-D PIV. The data enabled us to calculate the Lagrangian velocity autocorrelation function.

This content is only available via PDF.
You do not currently have access to this content.