Acoustic streaming phenomena pertaining to liquid-gas two-phase flow in a one-dimensional rigid duct is investigated numerically. The oscillatory bubbly flow is generated due to the sinusoidal vibration of the vertical left wall of the enclosure. Time-averaged streaming flow patterns exist in the duct as a consequence of interaction between gas bubbles and liquid which are similar to the Rayleigh-type acoustic streaming phenomena extensively investigated in single-phase flow. The liquid is treated as incompressible with a homogeneous distribution of non-condensable gas bubbles. The system is modeled with coupled nonlinear and flux-conservative partial differential equations combined with the Rayleigh-Plesset equation governing the bubble radius. The viscous interaction between bubbles and the surrounding incompressible liquid phase is the main mechanism for attenuation of the wave energy considered in this analysis. The numerical solutions are obtained by a control-volume based finite-volume Lagrangian method.

This content is only available via PDF.
You do not currently have access to this content.