The importance of using the lift force and wall-corrections of the drag coefficient for modeling the motion of solid particles in a fully-developed channel flow is investigated by means of direct numerical simulation (DNS). The turbulent channel flow is computed at a Reynolds number based on the wall-shear velocity and channel half-width of 185. Contrary to most of the numerical simulations, we consider in the present study a lift force formulation that accounts for the weak and strong shear as well as for the wall effects (hereinafter referred to as optimum lift force), and the wall-corrections of the drag force. The DNS results show that the optimum lift force and the wall-corrections of the drag together have little influence on most of the statistics (particle concentration, mean velocities, and mean relative and drift velocities), even in the near wall region.

This content is only available via PDF.
You do not currently have access to this content.