The dispersion of small inertial particles moving in a homogeneous, hypothetically stationary, shear flow is investigated using both theoretical analysis and numerical simulation, under one-way coupling approximation. In the theoretical approach, the previous studies are extended to the case of homogeneous shear flow with a corresponding anisotropic spectrum. As it is impossible to obtain a closed theoretical solution without some drastic simplifications, the motion of dispersed particles is also investigated using kinematic simulation where random Fourier modes are generated according to a prescribed anisotropic spectrum with a superimposed linear mean fluid velocity profile. The combined effects of particle Stokes number and dimensionless drift velocity (magnitude and direction) are investigated by computing the statistics from Lagrangian tracking of a large number of particles in many flow field realizations, and comparison is made between the observed effects in shear flow and in isotropic turbulence.

This content is only available via PDF.
You do not currently have access to this content.