The self-preserving mixing properties of steady round buoyant turbulent plumes in uniform crossflows were investigated experimentally. The experiments involved salt water sources injected into fresh water crossflows within the windowed test section of a water channel. Mean and fluctuating concentrations of source fluid were measured over cross sections of the flow using Planar-Laser-Induced-Fluorescence (PLIF) which involved seeding the source fluid with Rhodamine 6G dye and adding small concentrations of ethanol to the crossflowing fluid in order to match the refractive indices of the source flow and the crossflow. The self-preserving penetration properties of the flow were correlated successfully based on the scaling analysis of Diez et al. (2003) whereas the self-preserving structure properties of the flow were correlated successfully based on the scaling analysis of Fischer et al. (1979); both approaches involved assumptions of no-slip convection in the cross stream (horizontal) direction (parallel to the crossflow) and a self-preserving line thermal having a conserved source specific buoyancy flux per unit length that moves in the streamwise (vertical) direction (parallel to the direction of both the initial source flow and the gravity vector). The resulting self-preserving structure consisted of two counter-rotating vortices having their axes nearly aligned with the crossflow direction that move away from the source in the streamwise (vertical) direction due to the action of buoyancy. Present measurements extended up to 202 and 620 source diameters from the source in the streamwise and cross stream directions, respectively. The onset of self-preserving behavior required that the axes of the counter-rotating vortex system be nearly aligned with the crossflow direction. This alignment, in turn, was a strong function of the source/crossflow velocity ratio, uo/v∞. The net result was that the onset of self-preserving behavior was observed at streamwise distances of 10–20 source diameters from the source for uo/v∞ = 4 (the smallest value of uo/v∞ considered), increasing to streamwise distances of 160–170 source diameters from the source for uo/v∞ = 100 (the largest value of uo/v∞ considered). Finally, the counter-rotating vortex system was responsible for substantial increases in the rate of mixing of the source fluid with the ambient fluid compared to axisymmetric round buoyant turbulent plumes in still environments, e.g., transverse dimensions in the presence of the self-preserving counter-rotating vortex system were 2–3 times larger than the transverse dimensions of self-preserving axisymmetric plumes at similar streamwise distances from the source.
Skip Nav Destination
ASME 2005 Fluids Engineering Division Summer Meeting
June 19–23, 2005
Houston, Texas, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-4198-7
PROCEEDINGS PAPER
Self-Preserving Mixing Properties of Steady Round Buoyant Turbulent Plumes in Uniform Crossflows Available to Purchase
F. J. Diez,
F. J. Diez
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
L. P. Bernal,
L. P. Bernal
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
G. M. Faeth
G. M. Faeth
University of Michigan, Ann Arbor, MI
Search for other works by this author on:
F. J. Diez
University of Michigan, Ann Arbor, MI
L. P. Bernal
University of Michigan, Ann Arbor, MI
G. M. Faeth
University of Michigan, Ann Arbor, MI
Paper No:
FEDSM2005-77054, pp. 67-82; 16 pages
Published Online:
October 13, 2008
Citation
Diez, FJ, Bernal, LP, & Faeth, GM. "Self-Preserving Mixing Properties of Steady Round Buoyant Turbulent Plumes in Uniform Crossflows." Proceedings of the ASME 2005 Fluids Engineering Division Summer Meeting. Volume 1: Symposia, Parts A and B. Houston, Texas, USA. June 19–23, 2005. pp. 67-82. ASME. https://doi.org/10.1115/FEDSM2005-77054
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Self-Preserving Mixing Properties of Steady Round Buoyant Turbulent Plumes in Uniform Crossflows
J. Heat Transfer (October,2006)
Heat Transfer and Fluid Flow Characteristics in Supercritical Pressure Water
J. Heat Transfer (July,2009)
Round Turbulent Thermals, Puffs, Starting Plumes and Starting Jets in
Uniform Crossflow
J. Heat Transfer (December,2003)
Related Chapters
Risk to Space Shuttle Orbiter Windows from Particles in the Booster Separation Motor Plumes and from Foam Debris (PSAM-0178)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Extended Surfaces
Thermal Management of Microelectronic Equipment
Extended Surfaces
Thermal Management of Microelectronic Equipment, Second Edition