This study investigates the strength of the pressure-velocity correlations of a Mach 0.6, axisymmetric jet, with an exit nozzle diameter of 50.8mm. Experiments are conducted at a constant exit temperature of 25°C, and exit pressure and temperature are balanced with ambient conditions. The instantaneous velocity measurements are acquired using a multi-component LDA system who’s measurement volume is traversed along several radial and streamwise locations within the potential core, and mixing layer regions of the flow. The fluctuating lip pressure is simultaneously sampled by an azimuthal array of (15) dynamic transducers, evenly spaced at 24°. These are positioned just outside the shear layer near the jet exit at z/D = 0.875, and 1.75R from the centerline, where the pressure field has been shown to be hydrodynamic. From this multi-point evaluation, the cross-correlations between the near-field pressure array (fixed), and streamwise component of the velocity field (traversed) are examined as a function of radial, streamwise, and also azimuthal separation. The results illustrate a remarkable coherence between the near field pressure and the velocity field, on the order of 25%. Streamwise convection velocities of 0.77Uj and 0.73Uj are calculated within the potential core and shear layer, respectively. Analysis of the coherency spectra illustrates the frequency band of the correlations and suggest that the potential core and mixing layer regions of the flow are, in general, governed by the high and low frequency motions of the flow, respectively. The azimuthal modal distribution of the cross-correlation shows the dominance of the column mode of the jet, with no higher modes exhibited within the potential core region, and only modes 1 & 2 within the shear layer.
Skip Nav Destination
ASME 2005 Fluids Engineering Division Summer Meeting
June 19–23, 2005
Houston, Texas, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-4198-7
PROCEEDINGS PAPER
An Experimental Investigation of the Pressure-Velocity Cross-Correlation in an Axisymmetric Jet
Andre´ M. Hall,
Andre´ M. Hall
Syracuse University, Syracuse, NY
Search for other works by this author on:
Mark N. Glauser,
Mark N. Glauser
Syracuse University, Syracuse, NY
Search for other works by this author on:
Charles E. Tinney
Charles E. Tinney
Universite´ de Poitiers, Poitiers, France
Search for other works by this author on:
Andre´ M. Hall
Syracuse University, Syracuse, NY
Mark N. Glauser
Syracuse University, Syracuse, NY
Charles E. Tinney
Universite´ de Poitiers, Poitiers, France
Paper No:
FEDSM2005-77338, pp. 357-368; 12 pages
Published Online:
October 13, 2008
Citation
Hall, AM, Glauser, MN, & Tinney, CE. "An Experimental Investigation of the Pressure-Velocity Cross-Correlation in an Axisymmetric Jet." Proceedings of the ASME 2005 Fluids Engineering Division Summer Meeting. Volume 1: Symposia, Parts A and B. Houston, Texas, USA. June 19–23, 2005. pp. 357-368. ASME. https://doi.org/10.1115/FEDSM2005-77338
Download citation file:
3
Views
0
Citations
Related Proceedings Papers
Related Articles
The Effects of Curvature on Fluid Flow Fields in Pulmonary Artery Models: Flow Visualization Studies
J Biomech Eng (February,1993)
Laser-Based Investigations of Periodic Combustion Instabilities in a Gas Turbine Model Combustor
J. Eng. Gas Turbines Power (July,2005)
Investigation of the Large-Scale Flow Structures in the Cooling Jets Used in the Blown Film Manufacturing Process
J. Fluids Eng (September,2005)
Related Chapters
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Cavitating Flows of Varying Temperature Liquid Nitrogen in Converging-diverging Nozzle
Proceedings of the 10th International Symposium on Cavitation (CAV2018)