The Richtmyer-Meshkov (RM) instability occurs when a shock passes through a perturbed interface separating fluids of different densities. Similarly, RM instabilities may also occur when a perturbed interface between two incompressible fluids of different density is impulsively accelerated. We report work that investigates RM instabilities between incompressible media by way of numerical simulations that are matched to experiments reported by Niederhaus & Jacobs [1]. We also describe a compact, fractional time-step, two-dimensional, finite-volume numerical algorithm that solves the non-Bousinesq Euler equations explicitly on a Cartesian, co-located grid. Numerical advection of volume fractions and momentum is second-order accurate in space and unphysical oscillations are prevented by using Van Leer flux limiters [2,3]. An initial velocity impulse has been used to model the impulsive acceleration history found in the experiments [1]. We report accurate simulation of the experimentally measured early-, intermediate-, and late-time penetrations of one fluid into another.

This content is only available via PDF.
You do not currently have access to this content.