A typical industrial application of high temperature pumps involves handling of fluids up to 400 °C. This is critical for pump bearing housing, where thermal dissipation is not effective due to geometric configuration. Therefore, without any external cooling system, bearings and lubricating oil temperatures can exceed allowable values prescribed by both API 610 Reference Standard [1] and bearing manufacturer [2]. Particularly, for a overhung pump, when pumped fluid temperature is above 200 °C, external cooling system is necessary and water is usually used for this purpose. Consequently, water availability must be taken into account when considering pump’s location, which is particularly difficult in desert areas. From these considerations was the idea to enhance the heat transfer of the pump support, in order to avoid any need of cooling water. The problem has been dealt with numerical analysis and experimental tests. First, we have considered the original support in the most critical situation, the stand-by condition, where no forced convection (fan) is effective. From the results pertaining to currently used support, we have got the hints to improve heat transfer by a full redesign. Finally an experimental validation has been set up. The measures gained allow us to validate hypothesis taken into consideration in the numerical simulation.

This content is only available via PDF.
You do not currently have access to this content.