A numerical study and PIV investigation of flow in a novel viscous-based pumping device appropriate for microscale applications is described. The device, essentially consisting of a rotating cylinder eccentrically placed in a channel, is shown to be capable of generating a net flow. The two shape cross-sections of cylinders, the circular and four semi-elliptic lobed contour are studied, which is the steady and unsteady flow problem, respectively. The lattice Boltzmann equation (LBE) simulations at low Reynolds numbers are carried out to study the influence of various geometric parameters, which the results are compared with the PIV experiment ones. The unified solid curved wall boundary condition based on interpolation and the balance of momentum on the wall of the LBE simulation is used in steady and unsteady flow, and the moving boundary condition is also used in the latter. The numerical results indicated that the more effective pumping and better performance is obtained with the decrease of Reynolds number, as well as the increase regular degree of cylinder cross-section.

This content is only available via PDF.
You do not currently have access to this content.