Airflow and particle motions in aerodynamic lenses are studied. The computational grid is generated with the use of GAMBIT code and FLUENT 5 is used in the analysis. The axisymmetric compressible form of the Navier-Stokes equation is solved and the airflow conditions are evaluated. One-way coupling is assumed in that the air transports the particles, but the effect of dilute particle concentrations on flow field is ignored. The particle equation of motion including drag, lift and Brownian forces is used and the particle trajectories in the aerodynamic a lens are analyzed. In addition, the airflow field and particles motions downstream of the nozzle are also studied. A series of sensitivity analyses on the effect of inlet flow stagnation pressure and backpressure of the nozzle on the aerodynamic performance of the lens is performed. Sample streamlines and particles trajectories in an axisymmetric plane of a combination of three aerodynamic lenses and a nozzle are shown in the figures.

This content is only available via PDF.
You do not currently have access to this content.