Unsteady flow field and flow induced noise of vertical axis wind turbine are numerically investigated. The flow field is numerically calculated by the vortex method with core-spreading model. This simulation obtains aerodynamic performance and aerodynamic forces. Aerodynamic noise is also simulated by using Ffowcs Williams-Hawkings equation with compact body and low-Mach number assumptions. Tip speed of rotor blades are not so high, then the contribution of the moving sound source is smaller than that of the dipole sound source. Since the maximum power coefficient of VAWT can be obtained at lower tip-speed ratio compared to the conventional, horizontal axis wind turbines, the aerodynamic noise from vertical axis wind turbine is smaller than that of the conventional wind turbines at the same aerodynamic performance. This result indicates that the vertical axis wind turbines are useful to develop low-noise wind turbines.

This content is only available via PDF.
You do not currently have access to this content.