Careful experiments have been conducted for the purpose of investigating the phenomenon of condensation-induced waterhammer in an ammonia refrigeration system. To initiate a waterhammer event warm ammonia gas was introduced over static subcooled ammonia liquid placed in a horizontal 146.3 mm diameter carbon steel pipe 6.0 m in length. By means of fast response piezoelectric pressure transducers and a high speed data acquisition system rapid dynamic pressures were recorded whenever a shock event occurred. The occurrence of condensation-induced waterhammer depended upon three major variables; namely, (1) initial liquid depth, (2) liquid temperature, and (3) mass flow rate of warm gas. For given liquid depth and temperature, once the warm gas threshold conditions were exceeded shocks occurred with greater magnitude as the mass flow rate of gas input was increased. With adequate subcooling condensation-induced waterhammer occurred for initial liquid depths ranging from 25% to 95% of internal pipe diameter. The threshold mass flow rate of warm gas necessary to initiate waterhammer was greater as the initial liquid was lowered.

This content is only available via PDF.
You do not currently have access to this content.