A performance comparison of commercial CFD codes used for single-phase steady-state simulation of the internal flow within gasoline direct injection (GDI) nozzles has been undertaken. The CFD software codes used include AVL Fire 7.3, AVL Fire 8.01 and CFX-TASCflow 2.11. This presents a mix of segregated and coupled solver technology. High-pressure multi-hole and swirl injector models were analyzed at constant needle-lift values. The comparison focused on software capability, quality and steadiness of solution, calculation time taken, and the ability to streamline the problem solving methodology. Quantitative experimental results were not considered in the analysis due to the numerical nature of the investigation. It was seen that each CFD code produced similar flow fields and overall mass-flows. Results indicated that the steady-state solvers (Fire 8.01 and TASCflow 2.11) were able to decrease computation time significantly, by factors of 2 to 10 compared with the transient time-marching solver Fire 7.3. Further, TASCflow 2.11 was seen to be most appropriate for steady-state internal flow GDI simulations as it resolved the flow fields much quicker than the other codes due to a coupled solver. The multi-hole injector was seen to exhibit steady behavior using each CFD code, while the swirl injector presented some oscillations in the flow field, particularly for TASCflow 2.11. However, the use of single-phase steady-state solvers were found to be highly useful for engineering development of GDI, as it provides engineers with a quick parametric snapshot of the flow behavior, and can aid in the prediction of fuel spray patterns.
Skip Nav Destination
ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
July 6–10, 2003
Honolulu, Hawaii, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-3696-7
PROCEEDINGS PAPER
Performance Comparison of Commercial CFD Codes for Steady-State Internal Flow Simulation of Gasoline Direct Injection Available to Purchase
Jarrod Sinclair,
Jarrod Sinclair
Victorian Partnership for Advanced Computing, Melbourne, VIC, Australia
Search for other works by this author on:
Sylvester Abanteriba
Sylvester Abanteriba
Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
Search for other works by this author on:
Jarrod Sinclair
Victorian Partnership for Advanced Computing, Melbourne, VIC, Australia
Sylvester Abanteriba
Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
Paper No:
FEDSM2003-45814, pp. 1957-1965; 9 pages
Published Online:
February 4, 2009
Citation
Sinclair, J, & Abanteriba, S. "Performance Comparison of Commercial CFD Codes for Steady-State Internal Flow Simulation of Gasoline Direct Injection." Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. Volume 1: Fora, Parts A, B, C, and D. Honolulu, Hawaii, USA. July 6–10, 2003. pp. 1957-1965. ASME. https://doi.org/10.1115/FEDSM2003-45814
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Primary Atomization and Spray Analysis of Compound Nozzle Gasoline Injectors
J. Eng. Gas Turbines Power (January,1998)
The Effects of Diesel Injector Needle Motion on Spray Structure
J. Eng. Gas Turbines Power (January,2011)
Detached Eddy Simulation Simulation of Asymmetrical Flow in a High Pressure Diesel Injector
J. Eng. Gas Turbines Power (November,2017)
Related Chapters
Internal and Near Nozzle Flow Simulations of Gasoline Multi-Hole Injector (ECN Spray G) with Transient Needle Motion
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
In-Nozzle Cavitation-Induced Orifice-to-Orifice Variations Using Real Injector Geometry and Gasoline-Like Fuels
Proceedings of the 10th International Symposium on Cavitation (CAV2018)