A preconditioned numerical method for gas-liquid two-phase flows is applied to solve cavitating flow. The present method employs a finite-difference method of dual time-stepping integration procedure and Roe’s flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The present density based numerical method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flows characteristics at low Mach number. By this method, two-dimensional internal flows through a backward-facing step duct, a venturi tube and decelerating cascades are computed. Comparisons of predicted results with experiments are provided and discussed.

This content is only available via PDF.
You do not currently have access to this content.