In this paper we present a capability to predict pump performance in cavitating flow regimes. Simulations of cavitating flowfields in a single-stage inducer type pump have been carried out. The pump used in this paper is the Simplex inducer geometry that has been extensively tested at NASA Marshall. We follow our turbomachinery simulations up with an extension of our cavitation model to cryogenic flow regimes, where temperature effects begin to play a significant role. Our framework encompasses an acoustically accurate, compressible multiphase model that has been previously validated. The model is implemented within a multi-element unstructured framework that permits efficient grids with locally high resolution near the cavitating zones and in the tip gap region. The pump simulations were performed at a fixed flow rate with different Net Suction Specific Speeds (NSS). The computational analysis indicates a strong correlation between performance loss and the extent of cavitation blockage, and accurately identifies the critical NSS number where breakdown occurs. Predictions of head loss compare well with experimental data. The cryogenic simulations were performed with liquid nitrogen flowing over a cylindrical headform. These simulations capture the essential features of cryogenic cavities such as saturation pressure depression close to the leading edge, and frothy nature of cavitating zones.
Skip Nav Destination
ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
July 6–10, 2003
Honolulu, Hawaii, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-3696-7
PROCEEDINGS PAPER
Generalized Numerical Framework for Cavitation in Inducers Available to Purchase
Ashvin Hosangadi,
Ashvin Hosangadi
Combustion Research and Flow Technology, Inc., Dublin, PA
Search for other works by this author on:
Vineet Ahuja,
Vineet Ahuja
Combustion Research and Flow Technology, Inc., Dublin, PA
Search for other works by this author on:
Ronald J. Ungewitter
Ronald J. Ungewitter
Combustion Research and Flow Technology, Inc., Dublin, PA
Search for other works by this author on:
Ashvin Hosangadi
Combustion Research and Flow Technology, Inc., Dublin, PA
Vineet Ahuja
Combustion Research and Flow Technology, Inc., Dublin, PA
Ronald J. Ungewitter
Combustion Research and Flow Technology, Inc., Dublin, PA
Paper No:
FEDSM2003-45408, pp. 1239-1249; 11 pages
Published Online:
February 4, 2009
Citation
Hosangadi, A, Ahuja, V, & Ungewitter, RJ. "Generalized Numerical Framework for Cavitation in Inducers." Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. Volume 1: Fora, Parts A, B, C, and D. Honolulu, Hawaii, USA. July 6–10, 2003. pp. 1239-1249. ASME. https://doi.org/10.1115/FEDSM2003-45408
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Numerical Study of Cavitation in Cryogenic Fluids
J. Fluids Eng (March,2005)
Thermodynamic Effect on a Cavitating Inducer in Liquid Nitrogen
J. Fluids Eng (March,2007)
Simulations of Cavitating Flows Using Hybrid Unstructured Meshes
J. Fluids Eng (June,2001)
Related Chapters
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
CFD Simulations of a Mixed-flow Pump Using Various Turbulence Models
Mixed-flow Pumps: Modeling, Simulation, and Measurements
Multiphase Flow Simulations of Sediment Particles in Mixed-flow Pumps
Mixed-flow Pumps: Modeling, Simulation, and Measurements