Results of computational fluid dynamics validation for flow around a marine propeller are presented. Computations were performed for various advance ratios following experimental conditions. The objectives of the study are to propose and verify a hybrid mesh generation strategy, and to validate computational results against experimental data with advanced computational fluid dynamics tools. Computational results for both global and local flow quantities are discussed and compared with experimental data. The predicted thrust and torque are in good agreement with the measured values. The pressure distribution and pathlines on and around the blade surface well reproduce the physics of highly skewed marine propeller flow with tip vortex. The circumferentially averaged velocity components compare well with the measured values, while the velocity and turbulence quantities in the highly concentrated tip vortex region are under-predicted. The overall results suggest that the present approach is practicable for actual propeller design procedures.

This content is only available via PDF.
You do not currently have access to this content.