Numerical and experimental investigations were performed to study the effects of blade loading on pump inducer performance and flow fields. To compare the performance of inducers with different blade loadings, a three-dimensional inverse design method was applied to control the blade loading distribution of inducers. Firstly, a conventional helical inducer was designed. The blade number is three and the blade angle at the tip was chosen by the conventional design method. Then, two inducers were designed using a three-dimensional inverse design method with different blade loading distributions. One inducer was designed with fore-loading and the other was designed with aft-loading, but both inducers were designed with no leading edge loading. These two inducers have the same design specification as the conventional helical inducer. The CFD (Computational Fluid Dynamics) analyses and water model tests were performed on these three inducers. Both results showed that the inlet backflow characteristics of the 3-D inverse design inducers are improved from those of the conventional inducer. It was also found that the inlet backflow characteristics of inducers that have no leading edge loading are almost same despite different blade loading distributions. The inducer designed with fore-loading showed almost the same suction performance as the conventional inducer. Cavitation visualization and FFT analysis of unstable phenomena were also performed in this study.

This content is only available via PDF.
You do not currently have access to this content.