The open water model tests technique is well known and commonly used to predict propellers performance. In this paper, a quite different approach is intended and the main propeller variables are numerically modelled using a finite volume commercial code. Particularly, a fishing-boat propeller is numerically treated using a three-dimensional unstructured mesh. Mesh dependency and different turbulent models are considered together with an sliding technique to account for the rotation. Typical turbomachinery boundary conditions for a volume containing the propeller are imposed (inlet velocity and outlet static pressure). In order to get the open water test performance coefficients for the considered propeller (KT, KQ, η), different advance coefficient (J) are imposed as boundary conditions for the numerical model. The results of such simulations are compared with experimental data available for the open water tests of the propeller. Once the model is validated with the experimental data available, a wake field simulation would be possible and would lead to the definition of the fluid-dynamic variables (pressure, iso-velocity maps, etc.) which are needed during any design process. Also some comparisons with real scale thrust measurements are intended.

This content is only available via PDF.
You do not currently have access to this content.