Solid particle erosion is a complex phenomenon that depends on many factors such as particle and fluid characteristics, type of material being eroded, and flow geometry. Fittings used in the oil and gas industry such as elbows are susceptible to erosion when solid particles are present in the flow. The momentum of particles carries them across streamlines and the particles impinge the outer wall of the elbow resulting in erosion damage. In an erosive environment, plugged tees are commonly used instead of elbows to reduce the erosion especially where space considerations are important and long-radius elbows can not be used. However, it is unclear how much of a reduction in erosion occurs by replacing an elbow with a plugged tee. In order to compare the erosion in an elbow and a plugged tee exposed to the same flow conditions, a CFD-based erosion prediction model is applied. The model has three primary steps: flow modeling, particle tracking, and applying erosion equations. The results from the model agree with experimental findings for the elbow geometry. However, the simulation results for erosion rate generated for the plugged tee requires a stochastic approach. Results obtained with the erosion prediction model before and after this modification are shown.

This content is only available via PDF.
You do not currently have access to this content.