This paper presents the application of the isenthalpic two-phase flow approximation (Brennen, 1995) to the study of cavitation and ventilation effects in plane journal bearings with whirling eccentricity. A quasi-homogeneous bubbly liquid/vapor model, suitably modified to account for thermal effects (Rapposelli and d’Agostino, 2001), is used to describe the occurrence of flow cavitation. An homogeneous liquid/gas/vapor model without thermal effects is used to describe the simultaneous occurrence of cavitation and ventilation. The proposed model treats the fully-wetted and two-phase portions of the fluid in a unified manner in order to avoid the use of “ad hoc” matching conditions, whose applicability and accuracy is questionable in the presence of significant inertial and/or unsteady effects. A non-linear analysis that accounts for the inertia of the lubricant is used to determine the reaction forces caused by the shaft’s eccentric motion both in the viscosity-dominated regime and at intermediate values of the Reynolds number, where the inertia of the lubricant is no longer negligible. The classical iteration method for the Reynolds lubrication equation (Muster and Sternlicht, 1965; Mori and Mori, 1991; Reinhardt and Lund, 1975) has been extended to the unsteady two-phase flow case in order to account for flow acceleration effects in the presence of cavitation and/or ventilation. Significant deviations from the steady-state case are obtained at moderately high Reynolds numbers (Re = ωRc/νL ≅ 10). Comparisons with the scant experimental data support the validity of the proposed model. Results are shown in a number of representative cases in order to illustrate the influence of the relevant parameters.
Skip Nav Destination
ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
July 14–18, 2002
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-3615-0
PROCEEDINGS PAPER
Two-Phase Flow and Inertial Effects on the Rotordynamic Forces in Whirling Journal Bearings
Emilio Rapposelli,
Emilio Rapposelli
Universita` di Pisa, Pisa, Italy
Search for other works by this author on:
Roberto Falorni,
Roberto Falorni
Universita` di Pisa, Pisa, Italy
Search for other works by this author on:
Luca d’Agostino
Luca d’Agostino
Universita` di Pisa, Pisa, Italy
Search for other works by this author on:
Emilio Rapposelli
Universita` di Pisa, Pisa, Italy
Roberto Falorni
Universita` di Pisa, Pisa, Italy
Luca d’Agostino
Universita` di Pisa, Pisa, Italy
Paper No:
FEDSM2002-31007, pp. 369-376; 8 pages
Published Online:
February 24, 2009
Citation
Rapposelli, E, Falorni, R, & d’Agostino, L. "Two-Phase Flow and Inertial Effects on the Rotordynamic Forces in Whirling Journal Bearings." Proceedings of the ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. Volume 1: Fora, Parts A and B. Montreal, Quebec, Canada. July 14–18, 2002. pp. 369-376. ASME. https://doi.org/10.1115/FEDSM2002-31007
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Theoretical and Experimental Comparisons for Damping Coefficients of a Short-Length Open-End Squeeze Film Damper
J. Eng. Gas Turbines Power (October,1996)
Related Chapters
Hydrodynamic Lubrication
Design of Mechanical Bearings in Cardiac Assist Devices
Thermal Effects in Ultrasonic Cavitation of Ionic Liquids
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)