The problem of shock wave–turbulence interaction is addressed experimentally in a simplified flow configuration: the shock is normal to the flow direction and the incoming turbulence is homogeneous and quasi-isotropic. This paper mainly deals with the problem of the experimental realization of such an interaction in a supersonic wind tunnel. On the basis of an experimental set-up that showed great aptitude in creating a shock-turbulence interaction pure from major parasitic effects, see Barre et al. (1996), a new turbulence generator and a new shock generator were designed and built. It was found that the new turbulence generator creates a homogenous and quasi-isotropic turbulent supersonic flow at a distance of about 25 mesh sizes. The benefit of this new system was to increase the turbulence level before the interaction with the shock from 0.3% to 1.7%. The new shock generator system permitted to stabilize a normal shock of larger size compared to the previous configuration, at a distance of 32 mesh sizes. Initial conditions at the shock position were determined with details: important turbulent quantities of the supersonic flow before the interaction, such as turbulent kinetic energy, dissipation rate, Taylor micro-scale and integral length scale, were estimated. With this new experimental set-up, detailed turbulence measurements before and after the shock using fluctuations diagram techniques will be performed.

This content is only available via PDF.
You do not currently have access to this content.