Abstract

Wet compression is a widely used approach to enhance the compressor performance of gas turbine units. For wet compression, a water-spray consisting of tiny droplets is injected into the air inlet duct of the compressor. A multi-phase flow of humid air and water droplets enters the compressor. The continued water evaporation inside the compressor stages causes further cooling during the compression process.

Water injection between the compressor stages is called interstage injection. An advantage of interstage injection compared to wet compression is the optimized injection of water at specific positions inside the compressor. The amount of injected water can be adopted to the specific operating conditions of the different injection positions with the ideal of isothermal compression.

Interstage injection can be realized by several techniques. This paper focuses on interstage injection of water from the trailing edge of stator blades. The water spray is generated in the complex wake flow of the airfoil. This leads to strong interaction between the water spray and the carrier gas flow.

In this paper, especially the impact of water injection on the air flow and the spread of the spray is investigated. Phase Doppler Anemometry (PDA) measurements enable two dimensional velocity measurements linked with the droplet size. The comparison of PDA measurements and Computational Fluid Dynamic (CFD) calculations of the dry gas flow allows for the identification of flow instabilities due to interstage injection. Within this publication, a significant influence of the water injection from the trailing edge on the carrier flow is identified. Furthermore, the ability of the spray to spread widely into the flow demonstrates that water injection from the trailing edge is a promising technique for interstage injection.

This content is only available via PDF.
You do not currently have access to this content.