Abstract

A tube-type gas burner consists of a straight tube with a slit along it and discharges an air-gas mixture through the slit to produce a flame. The flow velocity from the slit depends on the pressure in the tube and the pressure loss at the slit, and it varies in the longitudinal direction of the tube. The resulting uneven flame degrades the quality of the burner.

In this study, we develop a one-dimensional theoretical model of the flow in a tube with a slit. To validate the result of the theoretical model, we also conduct experiments and numerical simulations for the same flow field. We applied this theoretical model to a flow in a tube, 1 m length, 40 mm in diameter, with a slit 2.5 mm wide. The end of the tube is closed. We also discuss the effect of the length of the burner on the unevenness.

This content is only available via PDF.
You do not currently have access to this content.