Abstract

This work addresses the numerical study of wave-piercing planing hull and related hydrodynamic performance as the appendages. From the half century ago, the interest in high-speed planing crafts has been advanced toward maintaining performance stably. The main reasons to make it hard are instability motion occurring from porpoising and wave condition. Porpoising is mainly due to overlap the heaving and pitching motion with certain period, which is caused by instable pressure distribution and changing longitudinal location of center of gravity. In addition, in wave condition, encountering wave disturbs going into planing mode. This paper presents numerical results of wave-piercing planing hull in porpoising and wave condition. Numerical simulation is conducted via Reynolds Averaged Navier-stokes (RANS) with moving mesh techniques (overset grid), performed at different wave condition. The results for the behaviors of wave-piercing hull form are practically presented and investigated in this study. The understanding of these phenomena is important for design of appendages of wave-piercing hull-form.

This content is only available via PDF.
You do not currently have access to this content.