A numerical analysis of an air-cooled proton exchange membrane fuel cell (PEMFC) has been conducted. The model utilizes the Eulerian multi-phase approach to predict the occurrence and transport of liquid water inside the cell. It is assumed that all the waste heat must be carried out of the fuel cell with the excess air which leads to a strong temperature increase of the air stream. The results suggest that the performance of these fuel cells is limited by membrane overheating which is ultimately caused by the limited heat transfer to the laminar air stream. A proposed remedy is the placement of a turbulence grid before such a fuel cell stack to enhance the heat transfer and increase the fuel cell performance.

This content is only available via PDF.
You do not currently have access to this content.