Flows in manifolds is a ubiquitous and important area to implement flow improvements. In almost all applications of industrial pipe flows, there is the requirement to distribute the flow of fluid. There is a deficiency of studies in the area of flow distribution in manifolds with high speed flows. The present work is aimed at providing a further understanding of transient high speed flow distribution in manifolds. The different manifold configurations were analysed computationally. A comparison was focused between through the different aspect ratio manifolds. The velocity field and the eddy viscosity parameters where compared between the simulated flow models to ascertain the key features in the distributed flow field and especially, to determine the areas that showed greater flow recirculation or flow eddies and the separated flow regions. The CFD study was conducted as a high speed flow/ compressible flow regime accounting for the ideal gas dynamic model being air as the working fluid. The study showed that the transient behaviour of flow field can significantly affect distribution of the flow depending on the aspect ratio and number of branches on the manifold. Efficiency gains can be achieved in high speed flows that can be of benefit in industrial and other engineered flow applications.

This content is only available via PDF.
You do not currently have access to this content.