Gyromill wind turbines with three different blade profiles were investigated experimentally and numerically in order to verify the effect of the direction of camber on aerodynamic performance.

Experiments were carried out using a model turbine impeller with an axial length of 200 mm and a diameter of 200 mm. The results showed that the maximum power coefficient was higher for blades with negative camber than for ones with positive camber. On the other hand, the operating range of the tip speed ratio tended to be narrower for the blades with negative camber than for the ones with positive camber.

An unsteady numerical flow analysis around the wind turbines was conducted using a commercial code employing the finite volume method. The results showed that the power coefficient of one blade had a maximum value in the second quadrant and that the blades with negative camber were advantageous for obtaining high rotational force in the position, compared with the blades with positive camber and a symmetrical blade.

This content is only available via PDF.
You do not currently have access to this content.