The essential components of a parallel dynamically adaptive lattice Boltzmann method coupled to a 6-degree-of-freedom rigid body motion solver are presented. This Cartesian approach with automatic fluid meshing is particularly well suited for simulating the interaction of low Reynolds number flows and moving structures with good accuracy and high computational performance. The fully coupled fluid-structure simulation method is demonstrated for the experiment of a two-segment hinged wing with torsion damper by Toomey & Eldredge, a simplistic model of a flapping wing in air. A grid convergence study assesses the prediction accuracy of the overall method and required CPU times. Our computations show very good agreement with measurements of the evolving hinge angle by Toomey & Eldredge; forces and moments are predicted with an error margin of generally <5% with respect to their computational results.

This content is only available via PDF.
You do not currently have access to this content.