One of the best examples of wasted energy is the selection of oversized pumps versus the rated conditions. Oversized pumps are forced to operate at reduced flows, far from their highest efficiency point. An unnecessarily large impeller will produce more flow than required, wasting energy. In the industrial field, trimming the impeller diameter is used more than changing the rotation speed to reduce the head of a pump. In this paper, the impeller trimming method of a mixed-flow pump is defined, and the variation in pump performance by reduction of the impeller diameter was predicted based on computational fluid dynamics. The impeller was trimmed to the same meridional ratio of the hub and shroud, and was compared in five cases. Numerical analysis was performed, including the inlet and outlet pipes in configurations of the mixed-flow pump to be tested. The commercial CFD code, ANSYS CFX-14.5, was used for the numerical analysis, and a three-dimensional Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were used to analyze incompressible turbulence flow. The performance parameters for evaluating the trimmed pump impellers were defined as the total efficiency and total head at the designed flow rate. The numerical and experimental results for the trimmed pump impellers were compared and discussed in this work.

This content is only available via PDF.
You do not currently have access to this content.