The wake of a surface-mounted finite-height square prism of sub-critical aspect ratio AR = 3 was studied experimentally in a low-speed wind tunnel at a Reynolds number of Re = 3.7×104. The ratio of the boundary layer thickness on the ground plane, to the width of the prism, was δ/D = 1.5. The incidence angle of the prism was varied from α = 0° to 45°. Wake mean velocity measurements were made in vertical planes normal to and parallel to the main flow direction using a seven-hole pressure probe. As the prism is rotated from α = 0° to 45°, the mean wake progressively widens and the maximum streamwise extent of the mean recirculation zone increases. The mean streamwise tip vortex pair is symmetric at 0° and 45°, but becomes strongly asymmetric at intermediate α, where the tip vortex is found higher above the ground plane on the wider side of the wake. The wake and tip vortex asymmetry is most pronounced near the critical incidence angle.

This content is only available via PDF.
You do not currently have access to this content.