Radial inflow turbines which are an important component of a turbocharger consist essentially of a volute, a rotor and a diffuser. Vaneless volute turbines, which have reasonable performance and low cost, are the most widely used in turbochargers for automotive engines. In recent years the growing necessity of increasing specific output power of turbochargers has encouraged the design of high pressure ratio turbine stage. Two stage turbines, which can achieve the high pressure ratio require, are not suitable to for these applications due to volume and weight increases. The common design trend is thus to use single stage high pressure ratio radial transonic turbine.

This paper describes numerical investigations of the flow fields in a radial inflow transonic turbine whose design pressure ratio is 4. The S-A turbulence model and Jameson’s center scheme have been applied in order to get good viscous resolution, accuracy and computing efficiency. Limiting streamlines on the wall surface as well as different flow characteristics, such as entropy generation of the cross sections, were evaluated, and detailed endwall flow and secondary flow structure were analyzed. The development of different vortex, especially the tip leakage vortex, vortex caused by the shock wave, passage vortex and horseshoe vortex were discussed. The results have shown that there is a great secondary flow feature and complicated vortex system in the high pressure ratio radial inflow transonic turbine.

This content is only available via PDF.
You do not currently have access to this content.