The flow characteristic of fluid at low Prandtl number is of continued interest in the nuclear industry because liquid metals are to be used in the next-generation nuclear power reactors. In this work we performed direct numerical simulation (DNS) for turbulent channel flow with fluid of low Prandtl number. The Prandtl number was set to 0.025, which is representative of the behavior of liquid metals. Constant heat flux was imposed on the walls to study heat transfer behavior, with different boundary conditions for temperature fluctuation. The bulk Reynolds number was set as high as 50,000, with a corresponding friction Reynolds number of 1,200, which is closer to the situation in a reactor or a heat exchanger than used in normally available databases. Budgets for turbulent variables were computed and compared with predictions from several RANS turbulence models. In particular, the Algebraic Heat Flux Model (AHFM) has been the focus of this comparison with DNS data. The comparisons highlight some shortcomings of AHFM along with potential improvements.
Skip Nav Destination
ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
July 26–31, 2015
Seoul, South Korea
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5721-2
PROCEEDINGS PAPER
Direct Numerical Simulation of Turbulent Channel Flow With Heat Transfer for Low Prandtl and High Reynolds and Comparison With Algebraic Heat Flux Model
Haomin Yuan,
Haomin Yuan
University of Wisconsin, Madison, WI
Search for other works by this author on:
Elia Merzari
Elia Merzari
Argonne National Laboratory, Argonne, IL
Search for other works by this author on:
Haomin Yuan
University of Wisconsin, Madison, WI
Elia Merzari
Argonne National Laboratory, Argonne, IL
Paper No:
AJKFluids2015-8740, V001T08A002; 9 pages
Published Online:
November 20, 2015
Citation
Yuan, H, & Merzari, E. "Direct Numerical Simulation of Turbulent Channel Flow With Heat Transfer for Low Prandtl and High Reynolds and Comparison With Algebraic Heat Flux Model." Proceedings of the ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. Volume 1: Symposia. Seoul, South Korea. July 26–31, 2015. V001T08A002. ASME. https://doi.org/10.1115/AJKFluids2015-8740
Download citation file:
19
Views
0
Citations
Related Proceedings Papers
Related Articles
A New Approach to Numerical Simulation of Small Sized Plate Heat Exchangers With Chevron Plates
J. Heat Transfer (March,2007)
A Near-Wall Eddy Conductivity Model for Fluids With Different Prandtl Numbers
J. Heat Transfer (November,1994)
Related Chapters
Two Advanced Methods
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Application of Universal Functions
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine