Experimental study on tip vortex cavitation (TVC) was carried out for elliptical hydrofoils with various chord lengths. The purpose of the experiment was to clarify the influences of Reynolds number and water quality on tip vortex cavitation. Experiments were made in a large cavitation tunnel of the Naval Systems Research Center, TRDI/Ministry of Defense Japan. The elliptical hydrofoils tested were NACA 0012 cross section with chord lengths of 500mm, 250mm and 50mm. Reynolds number based on hydrofoil chord length was 2×105 < ReC < 7.4×106. Water quality of the tunnel was characterized by air content and nuclei distribution. Air content of the tunnel was varied between 30% and 80%. Nuclei distribution was measured by a cavitation susceptibility meter (CSM) with center-body venturi. Cavitation inception was determined from high speed video observation. A standard formula, (σLS) = (ReL/ReS)n, was applied for the scaling. In the present study, exponent of the scaling law n was found to be 0.2 < n < 0.4. High speed video observation showed that the process of the TVC inception strongly depends on water quality. In the experiments, unsteady behaviors of TVC were also investigated. Strong interactions between sheet cavitation and TVC were observed.

This content is only available via PDF.
You do not currently have access to this content.