Investigations of the unsteady flow field characters in a axial-flow pump at different conditions are presented in the paper. The numerical simulation of the unsteady flow field is performed with FLUENT codes based on RNG k-ε model and SIMPLEC arithmetic. Numerical results show that the strong-coupling evolutions of static pressure and axial velocity distribution between rotor and stator in multi-conditions are periodic with the rotation of rotor. The interaction of stationary and rotating pressure field leads to periodic flow field distortions and induces pressure fluctuation. It is found that the maximum pressure amplitude of blade passing frequency occurs in the rotor inlet zone, but it deceases very fast backward to the stator. The dominant frequency at monitoring points located at rotor inlet, outlet and stator outlet, corresponds to the blade passage frequency. The axial velocity distortion resulting from the modulation of the interacting stationary and rotating flow field is affected by the blade numbers and thickness of both rotor and stator. The axial velocity has different distributions at different conditions, and the phase of it changes cyclically. However, the axial velocity distribution at stator outlet is also mainly affected by the stator blade numbers, but its phase does not change cyclically.

This content is only available via PDF.
You do not currently have access to this content.