The need for reliable CFD simulation tools is a key factor for today’s automotive industry, especially for what concerns aerodynamic design driven by critical factors such as the engine cooling system optimization and the reduction of drag forces, both limited by continuously changing stylistic constraints. The Ahmed body [1] is a simplified car model nowadays largely accepted as a test-case prototype of a modern passenger car because in its aerodynamic behavior is possible to recognize many of the typical features of a light duty vehicle. Several previous works have pointed out that the flow region which presents the major contribution to the overall aerodynamic drag, and which presents severe problems to numerical predictions and experimental studies as well, is the wake flow behind the vehicle model. In particular, a more exact simulation of the wake and separation process seems to be essential for the accuracy of drag predictions. In this paper a numerical investigation of flow around the Ahmed body, performed with the open-source CFD toolbox OpenFOAM®, is presented. Two different slant rear angle configurations have been considered and several RANS turbulence models, as well as different wall treatments, have been implemented on a hybrid unstructured computational grid. Pressure drag predictions and other flow features, especially in terms of flow structures and velocity field in the wake region, have been critically compared with the experimental data available in the literature and with some prior RANS-based numerical studies.

This content is only available via PDF.
You do not currently have access to this content.