Experimental measurement study on the structure of the Reynolds stress and turbulence spectrum for wind flows over a two-dimensional escarpment with mild upwind slope (slope angle θ = 15°) were performed in the wind tunnel. The Quadrant analysis was applied to analyze the experimental data and yield the structure of the Reynolds stress. In according to the quadrant analysis, the Reynolds stress is composed of four events of the stress components, i.e. outward interaction, ejection (low-speed fluid upward), inward interaction, and sweep (high-speed fluid downward). Measured results show that: (1) Measurements of the structure of the Reynolds stress reveal that both the sweep and ejection events are the major contributors to the Reynolds stress for flow around the two dimensional escarpment with mild upwind slope. (2) The contributions to the Reynolds stress made by ejection events and sweep events are almost the same at heights Z/Zref greater than 0.2 for different downstream distances along the mild slope of escarpment. Here Zref is the turbulent boundary layer thickness. When flow reached the top of the slope of escarpment, stress fractions of ejection event and sweep event, S2 and S4 increased significantly. (3) The he turbulent energy spectrum distribution was not found very dominant spectrum peak as winds flow over the mild upwind slope and top surface of escarpment.

This content is only available via PDF.
You do not currently have access to this content.