The turbulent mixing of liquid mass caused by an air bubble rising near a wall in a still liquid in a pipe is investigated experimentally using a photochromic dye. A part of the liquid is activated by UV light and subjected to the fluid motion caused by a zigzag rising bubble of which Reynolds number is 214. The visualized mixing patterns showed that the dye is mixed by vortex motions in the bubble wake that is similar to the case of a bubble rising in the center of the pipe. The concentration distributions were deduced from the dye images using Lambert-Beer’s law and the turbulent diffusion coefficient (TDC) was evaluated from the temporal changes in the mass dispersion. The TDCs showed that a near-wall bubble generates stronger mixing than for a bubble in the center of the pipe. This stronger mixing can be attributed to the large-scale vortices observed for a near-wall bubble, which remains active for a longer time due to the lack of oppositely rotating vortices and mixes more fluids.

This content is only available via PDF.
You do not currently have access to this content.