This paper describes the resent development of a virtual flux method for simulating fluid-structure interaction problems. The virtual flux method is one of the sharp interface Cartesian grid methods. The numerical flux across the interface is replaced with the virtual flux so that proper interface conditions must be satisfied there. In this study, the virtual flux method is applied to numerical flow simulations about reciprocating engines. The compressible Navier-Stokes equations are coupled with the equation of motion of the piston, connecting rod, and crank system. Intake and exhaust valves are lifted up and down according with the crank angle in the intake and exhaust strokes. Instead of modeling the complex fuel combustion process, a proper amount of energy is added to the Navier-Stokes equation at the beginning of each expansion stroke, to retain the four stroke engine cycle at a constant revolution rate. Initially the engine is started by starter motor force, which is added for a few seconds. The engine comes to work at the revolution rate intended after some initial transition cycles. With designing the intake and exhaust valve lift properly, intake mass and revolution rate are improved by several percent. It is confirmed that the virtual flux method is easily applicable to the simulation of fluid-structure interaction problems.
Skip Nav Destination
ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
July 24–29, 2011
Hamamatsu, Japan
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4440-3
PROCEEDINGS PAPER
Fluid-Structure Interactive Simulation Using a Virtual Flux Method
Koji Morinishi,
Koji Morinishi
Kyoto Institute of Technology, Kyoto, Japan
Search for other works by this author on:
Tomohiro Fukui
Tomohiro Fukui
Kyoto Institute of Technology, Kyoto, Japan
Search for other works by this author on:
Koji Morinishi
Kyoto Institute of Technology, Kyoto, Japan
Tomohiro Fukui
Kyoto Institute of Technology, Kyoto, Japan
Paper No:
AJK2011-20011, pp. 3695-3701; 7 pages
Published Online:
May 25, 2012
Citation
Morinishi, K, & Fukui, T. "Fluid-Structure Interactive Simulation Using a Virtual Flux Method." Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D. Hamamatsu, Japan. July 24–29, 2011. pp. 3695-3701. ASME. https://doi.org/10.1115/AJK2011-20011
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Fluid Motion Within the Cylinder of Internal Combustion Engines—The 1986 Freeman Scholar Lecture
J. Fluids Eng (March,1987)
Examination of Initialization and Geometric Details on the Results of CFD Simulations of Diesel Engines
J. Eng. Gas Turbines Power (April,2011)
Air System and Diesel Combustion Modeling for Hardware in the Loop Applications
J. Eng. Gas Turbines Power (April,2012)
Related Chapters
Introduction I: Role of Engineering Science
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Alternative Systems
Turbo/Supercharger Compressors and Turbines for Aircraft Propulsion in WWII: Theory, History and Practice—Guidance from the Past for Modern Engineers and Students
Lay-Up and Start-Up Practices
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration