Numerical simulations of 3D aircraft configurations are performed in order to understand the effects that turbulence models have on the aerodynamic characteristics of an aircraft. An in-house CFD code that solves 3D RANS equations and 2-equation turbulence model equations is used for the study. The code applies Roe’s approximated Riemann solver and an AF-ADI scheme. Furthermore van Leer’s MUSCL extrapolation with van Albada’s limiter is adopted. Various versions of Menter’s k-omega SST turbulence models as well as Coakley’s q-omega model are incorporated into the CFD code. Menter’s k-omega SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared to computational results of the 3rd AIAA CFD Drag Prediction Workshop. Moreover, numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared to computational results of the 2nd AIAA CFD Drag Prediction Workshop. Especially, the aerodynamic characteristics as well as flow features with respect to the turbulence models are scrutinized. The results obtained from each simulation incorporating Menter’s k-omega SST turbulence model variations are compared with one another.

This content is only available via PDF.
You do not currently have access to this content.