With the steady increase in computing power, there have been numerous efforts to numerically quantify turbulence modulation by inertial particles. However, highly resolving the flow around thousands to millions of particles to get an accurate particle/turbulence interaction has been prohibited by the number of grid points required. Thus, physical models have been developed and “plugged” to well-resolved numerical simulations to render prediction of turbulence modulation tractable. In this work, flow turbulence modulation by dispersed solid particles in a bluff body was studied using two-way-coupled stochastic large eddy simulation. Point-force scheme was used to model the inertial particle back effects on the fluid motion. The fluid velocity field seen by inertial particles was stochastically constructed based on the filtered flow field obtained from well resolved large eddy simulations. For that purpose a Langevin-type stochastic diffusion process was used with the necessary modifications to account for particle inertia, cross-trajectory effects and the two-way coupling. The numerical results regarding mean and turbulence statistics for the fluid phase show a very good agreement with the experimental findings for both low and high mass loadings (22% and 110% respectively). This numerical investigation demonstrates also the ability of the stochastic-LES-particle approach to predict turbulence modification by inertial particles.

This content is only available via PDF.
You do not currently have access to this content.