The flapping motion of the flow is one of the coherent structures in a two-dimensional turbulent jet. In past studies, the flapping phenomenon indicated that a pair of fluid lumps with the positive and negative streamwise velocity fluctuation exists on the opposite sides of the jet centerline, and the signs of the velocity fluctuation for those fluid lumps change alternately as the time advances. Additionally, it is known that the vortices at the jet exit are arranged symmetrically to the jet centerline and gradually become the alternate arrangement, and in the self-preserving region, the flapping phenomenon can be observed. However, the reason why the flapping phenomenon arises is not cleared yet. In this study, in order to clarify the influence of the velocity and pressure fluctuation on the arising of the flapping phenomenon, the characteristics of the velocity and pressure at near the jet exit are investigated. The measurements of the flapping phenomenon, the characteristics of the velocity and pressure at near the jet exit are conducted by using combined probe composed of an X-type hot-wire probe and a pressure probe, and at the same time, the measurements of streamwise velocity fluctuations at the two points in the self-preserving region are performed to determine the time when the flapping phenomenon is arising. The measured data are analyzed statistically by ensemble-averaging technique and conditional-sampling technique on the basis of the intermittency function for the flapping/non-flapping decision. The intermittency function is obtained by applying the wavelet transform analysis to the measured data by two I-type hot wire probes placed at the opposite side of the jet centerline in the self-preserving region. Measured and analyzed results show that the RMS value of the streamwise velocity fluctuation at the jet exit is clearly different according to whether flapping phenomenon arises or not. On the other hand, the RMS value of the pressure fluctuation at the jet exit is not influenced by the arising of the flapping phenomenon. In addition, the possibility that the arising of the strong negative pressure fluctuation at near the jet exit has an important role in the flapping phenomenon is shown.

This content is only available via PDF.
You do not currently have access to this content.