This study aims to clarify the self-organized structure of microbubble plume as a result of two-way interaction between microbubbles and a flow of the surrounding liquid medium. We observed a sequence on a development of microbubble plumes in a thin fluid layer. Here the microbubbles show accumulation pattern with a different wavenumber depending on the height in the vessel. Variation of spatial wavenumber in the developing process was determined from visualization images, and three areas were distinguished in this process; (1) the area of rising microbubbles with a large wavenumber in a horizontal direction without time dependence; (2) the area of forming a large-scale flow structure, called ‘microbubble plume’ here, which keeps the primary information, horizontal wavenumber of the bubble accumulation with a large wavenumber; (3) the area where the microbubble distribution takes a smaller wavenumber and makes vertical accumulation pattern inside the bubbly flow that is due to the mutual interaction between rising microbubbles and a flow induced by bubbles. To clarify these mutual interactions between liquid and gas phases, we visualized fluid motion of the liquid phase around the microbubble plumes by laser induced fluorescence, LIF. In this way, swaying motions on the tip of rising up bubble plume and liquid phase entrainment into the bubble plumes were visualized. We found the mechanisms for the creation of the self-organized distribution of microbubbles in bubbly flows and its temporal change as the result of the interaction between gas and liquid phase motions in bubbly flows.

This content is only available via PDF.
You do not currently have access to this content.