Breakup and encapsulation phenomena are analytically investigated for a gas-cored compound liquid jet which consists of an inviscid and incompressible core gas and surrounding annular liquid. Applying the long wave approximation to both core and annular phases, a set of reduced nonlinear equations is derived for large deformations of the jet. Breakup of the jet is numerically examined in the reduced equations when the jet is semi-infinite and sinusoidal disturbances are fed at the end of the jet. It is found that there exit the most unstable frequencies of disturbances giving the shortest breakup time, which increase as the increase of input amplitudes and velocity ratios of the core to the annular phases, while increase or decrease depending upon the Weber numbers based on the annular phase. For small and medium Weber numbers, it is shown that the jet breaks up by pinching of the core phase and the capsule formation periods and sizes can be determined by the most unstable frequencies, which well agree with the results in the previous experiment and the existing phenomenological model. On the other hand, it is also shown for large Weber numbers that the jet breaks up by disintegration of the annular phase and fails to encapsulate the core gas.
Skip Nav Destination
ASME-JSME-KSME 2011 Joint Fluids Engineering Conference
July 24–29, 2011
Hamamatsu, Japan
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4440-3
PROCEEDINGS PAPER
Encapsulation and Disintegration of a Gas-Cored Annular Liquid Jet
Takao Yoshinaga
Takao Yoshinaga
Osaka University, Osaka, Japan
Search for other works by this author on:
Takao Yoshinaga
Osaka University, Osaka, Japan
Paper No:
AJK2011-10040, pp. 2605-2611; 7 pages
Published Online:
May 25, 2012
Citation
Yoshinaga, T. "Encapsulation and Disintegration of a Gas-Cored Annular Liquid Jet." Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D. Hamamatsu, Japan. July 24–29, 2011. pp. 2605-2611. ASME. https://doi.org/10.1115/AJK2011-10040
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Nonlinear Mechanics of Solids Containing Isolated Voids
Appl. Mech. Rev (July,2006)
Accurate Nonlinear Equations and a Perturbation Solution for the Free Vibrations of a Circular Elastic Ring
J. Appl. Mech (March,1979)
Large Amplitude Oscillations of Thin Circular Rings
J. Appl. Mech (June,1987)
Related Chapters
The Solutions for the Equations with Localized Consistent Blow-Up Rate
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
Some Laws to Affect the Results in Numerical Calculus
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Application of the Ergodic Algorithm for Solving Nonlinear Equations and Tridiagonal Linear Equations
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)