An experiment investigation on the formation and breakup of a hollow jet issuing from a coaxial nozzle into ambient air has been carried out. The hollow jet consists of an outer jet of water that encloses an inner jet of argon gas. By varying the flow rate ratio of the inner jet to the outer jet, three different breakup patterns of hollow water jets are identified using two types of nozzles: (I) satellite formation, (II) single-core hollow drop formation, and (III) multi-core hollow drop formation. These patterns are mapped in a space of Weber number versus flow rate ratio, We – Q. Experimental results in pattern (II) show that increasing the flow rate ratio results in increasing the formation frequency, slightly increasing outer diameters of the hollow drops, and decreasing their wall thickness.

This content is only available via PDF.
You do not currently have access to this content.