The ghost fluid method (GFM) is improved to investigate violent bubble collapse in a compressible liquid, in which the adaptive mesh refinement with multigrids, the surface tension, and the thermal diffusion through the bubble interface are taken into account. The improved multigrid GFM is applied to the interaction of an incident shock wave with a bubble. The multigrid GFM captures the fine interfacial and vortex structures of the toroidal bubble when the bubble collapses violently accompanied with the penetration of the liquid jet and the formation of the shock waves. The multigrid GFM is also applied to the bubble collapse near a tissue surface in which the tissue is modeled with gelatin in order to predict the tissue damage due to the bubble collapse; the motions of three phases for the gas inside the bubble, the liquid surrounding the bubble, and the gelatin boundary are solved directly by coupling the level set method with the improved GFM. Two kinds of level set functions are utilized for distinguishing the gas-liquid interface from the liquid-gelatin interface. It is shown that the impact of the shock waves generated from the collapsing bubble on the boundary leads to the formation of depression of the boundary; the toroidal bubble penetrates into the depression. Also, the surface tension effects are successfully included in the improved GFM. The thermal effects of internal gas on the bubble collapse are also discussed by considering the thermal diffusion across the interface in the GFM. The thermal boundary layers of the toroidal bubble are captured with the method. The result shows that the smaller the initial bubble radius becomes, the lower the maximum temperature inside the bubble becomes because of the thermal diffusion across the interface.

This content is only available via PDF.
You do not currently have access to this content.