Novel computational and small-scale experimental investigations were performed in order to better understand the high velocity flow behavior of gas-particle mixtures. The motion of solid objects impacted by the flow of the mixtures was measured by use of high-speed digital video photography. Computations were performed by use of an arbitrary Lagrangian Eulerian (ALE) treatment in a nonlinear finite element code. Constitutive models for description of the solid component of the gas-particle blend were developed based on quasi-statically determined test results. It was observed that there was very close agreement between experimental and computational results and that it was possible to accurately predict the high velocity flow behavior of the gas-particle mixture using quasi-statically determined constitutive models.

This content is only available via PDF.
You do not currently have access to this content.