The effects of nonlinearities on the stability are explored for shear thickening fluids in the narrow-gap limit of the Taylor-Couette flow. A dynamical system is obtained from the conservation of mass and momentum equations which include nonlinear terms in velocity components due to the shear-dependent viscosity. It is found that the critical Taylor number, corresponding to the loss of stability of Couette flow becomes higher as the shear-thickening effects increases. Similar to the shear thinning case, the Taylor vortex structure emerges in the shear thickening flow; however they quickly disappear thus bringing the flow back to the purely azimuthal flow. Naturally, one expects shear thickening fluids to result in inverse dynamical behavior of shear thinning fluids. This study proves that this is not the case for every point on the bifurcation diagram.

This content is only available via PDF.
You do not currently have access to this content.