Three-dimensional direct numerical simulations (DNSs) of turbulent premixed planar, jet and V flames of hydrogen-air mixture have been conducted to investigate the flame brush and the local flame structures at high Reynolds number turbulences. The detail kinetic mechanism including 12 reactive species and 27 elementary reactions was used to represent the hydrogen-air reaction. For planar flame, flame front is highly fluctuating, and multi-layer structure, multiply-folded flame front and unburned mixture island which lead to corresponding increase of the flame brush thickness can be observed. The flame brush thickness of the planar flame is relatively uniform along the flame front, and is about 2∼3 times the integral length scale (l), which is defined from an energy spectrum. For the jet and V flames, the flame brush thicknesses grow with the streamwise direction from about 0.5∼1 times the integral length scale (l) to about 2∼3 times the integral length scale (l) due to the highly fluctuating flame front at the downstream region.

This content is only available via PDF.
You do not currently have access to this content.