Rice husk was burned in a bench-scale fluidized bed combustor (53 mm I.D. and 1.3m height) at 1123 K. Silica sand (average size 0.27 mm) was employed as conventional bed material. As an alternative bed material, a kind of porous alumina (average size 0.69 mm) was employed. Unburned gas (CO) emissions were suppressed by employing porous alumina as bed material. NOx emissions from the alumina bed were also suppressed in comparison to the sand bed. N2O emissions were nearly negligible (less than 10 ppm) for both bed materials. During combustion in the sand bed, sudden temperature rise up to 1450 K and increase in pressure drop across the bed were observed. Agglomerates were found in the bed material after the experiments. For the porous alumina bed, such agglomeration trouble did not occur. As conclusion, the present porous alumina was effective for both reduction of pollutants emissions and stable operation.

This content is only available via PDF.
You do not currently have access to this content.