For over 20 years, it has been known that there is a sulfur capture maximum around 850°C for limestone sorbents in FBC systems, albeit that this maximum appears to depend both on the characteristics of the FBC unit and the sorbent itself. Numerous explanations have been given for the temperature maximum at higher temperatures, including reducing reaction of CaSO4 with CO, sintering of sorbent particles which results in lower porosity and surface area. Other explanations include equilibrium between SO2 and SO3 with higher temperatures reducing the availability of SO3 for reaction with CaO, blocked sorbent pores at higher temperatures, and depletion of oxygen in the dense phase of the bed at higher temperatures. The most plausible explanation is that the temperature maximum results from a competition between sulfation and reduction of the sorbent, with reduction becoming more important at higher temperatures. Clear elucidation of the factors that affect the temperature dependence and an explicit relationship for the temperature maximum ought to permit improvements in sulfur capture efficiency to be achieved. Currently, no explicit relation appears to exist, and hence we provide an analysis for the temperature maximum based on the competition between sulfation and reduction, and derive an expression for the sulfur capture efficiency as a function of gas composition, sorbent residence time and apparent reaction rate coefficients, all of which are dependent on temperature. The expression relates operation conditions and sorbent activity to the temperature maximum, and may serve as a stepping-stone for future studies in this area.
Skip Nav Destination
17th International Conference on Fluidized Bed Combustion
May 18–21, 2003
Jacksonville, Florida, USA
Conference Sponsors:
- Advanced Energy Systems
ISBN:
0-7918-3680-0
PROCEEDINGS PAPER
A Discussion of the Temperature Maximum for Sulfur Capture Efficiency in Fluidized Bed Combustion Systems
Jinsheng Wang,
Jinsheng Wang
Natural Resources Canada, Ottawa, ON, Canada
Search for other works by this author on:
Edward J. Anthony
Edward J. Anthony
Natural Resources Canada, Ottawa, ON, Canada
Search for other works by this author on:
Jinsheng Wang
Natural Resources Canada, Ottawa, ON, Canada
Edward J. Anthony
Natural Resources Canada, Ottawa, ON, Canada
Paper No:
FBC2003-115, pp. 451-453; 3 pages
Published Online:
December 22, 2008
Citation
Wang, J, & Anthony, EJ. "A Discussion of the Temperature Maximum for Sulfur Capture Efficiency in Fluidized Bed Combustion Systems." Proceedings of the 17th International Conference on Fluidized Bed Combustion. 17th International Conference on Fluidized Bed Combustion. Jacksonville, Florida, USA. May 18–21, 2003. pp. 451-453. ASME. https://doi.org/10.1115/FBC2003-115
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
Effect of Pressure on Second-Generation Pressurized Fluidized Bed Combustion Plants
J. Eng. Gas Turbines Power (April,1994)
Assessment of Sorbent Reactivation by Water Hydration for Fluidized Bed Combustion Application
J. Energy Resour. Technol (June,2006)
Understanding the Behavior of Calcium Compounds in Petroleum Coke Fluidized Bed Combustion (FBC) Ash
J. Energy Resour. Technol (December,2006)
Related Chapters
Alternative Coal-Fired Power Plant Concepts (FBC and IGCC)
Clean and Efficient Coal-Fired Power Plants: Development Toward Advanced Technologies
On the Evaluation of Thermal and Mechanical Factors in Low-Speed Sliding
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Forging Strain Rate and Deformation Temperature Effects on the Fracture Toughness Properties of Type 304L Stainless Steel Precharged with Tritium
International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments